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ABSTRACT
Recently, sequential recommendation has become a research hotspot
while multi-behavior sequential recommendation (MBSR) that ex-
ploits users’ heterogeneous interactions in sequences has received
relatively little attention. Existing works often overlook the comple-
mentary effect of different perspectives when addressing the MBSR
problem. In addition, there are two specific challenges remained to
be addressed. One is the heterogeneity of a user’s intention and the
context information, the other one is the sparsity of the interactions
of target behavior. To release the potential of multi-behavior inter-
action sequences, we propose a novel framework named NextIP that
adopts a dual-task learning strategy to convert the problem to two
specific tasks, i.e., next-item prediction and purchase prediction. For
next-item prediction, we design a target-behavior aware context
aggregator (TBCG), which utilizes the next behavior to guide all
kinds of behavior-specific item sub-sequences to jointly predict the
next item. For purchase prediction, we design a behavior-aware
self-attention (BSA) mechanism to extract a user’s behavior-specific
interests and treat them as negative samples to learn the user’s pur-
chase preferences. Extensive experimental results on two public
datasets show that our NextIP performs significantly better than
the state-of-the-art methods.
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1 INTRODUCTION
Recommender systems are often deemed indispensable for alle-
viating the information overload problem and assisting users to
find their preferred items efficiently in many applications, e.g.,
e-commerce, news and entertainment [11]. Among the different
research branches of recommender systems, sequential recommen-
dation that aims to predict the next interaction (e.g., examination
on an item) based on a user’s previous interaction sequence of a
certain type of behavior (e.g., examination) has become a research
hotspot.

However, sequential recommendation that solely leverages the
interaction data of one single type of behavior may result in unsatis-
factory recommendation performance especially when the behavior
data is sparse [22]. Taking the e-commerce scenario as an example,
on one hand, a company’s ultimate goal is to guide users to pur-
chase items while the purchase data is usually very rare. On the
other hand, a real-world e-commerce platform often contains some
more abundant auxiliary behaviors (e.g., examinations, adds-to-cart
and adds-to-favorite). Therefore, we have the potential to mine and
transfer knowledge from the auxiliary behaviors to improve the
performance in predicting the target behaviors, i.e., purchases. We
name this type of research problem as multi-behavior sequential
recommendation (MBSR) in this paper. Although there are so far
very few studies on MBSR, we believe that MBSR is often more in
line with the settings of various real-world scenarios, which thus
deserves more attention.

The previous works on MBSR can be roughly classified into two
branches: one is to model the behavior-agnostic item sequences
and the corresponding behavior sequences [18, 29], and the other is
to divide a multi-behavior interaction sequence into some behavior-
specific item sub-sequences for later joint modeling [32]. In addition,
modeling the transitions from some auxiliary behaviors to a target
behavior is essential for understanding a user’s target-oriented pref-
erences. For example, a user may examine some different brands
of earphones for comparison before making a purchase decision,
where the transitions from previous examinations to a final pur-
chase usually indicate the user’s real purchase-oriented preferences.

Motivated by the above observations, we take a step forward
and propose a novel solution named NextIP, which models a multi-
behavior interaction sequence in a new perspective and models
the transitions from some auxiliary behaviors to the target behav-
ior from a user’s perspective. Firstly, to unlock the potential of a
multi-behavior interaction sequence, we treat it as a behavior se-
quence, some behavior-specific item sub-sequences, and a behavior-
agnostic item sequence. Secondly, we utilize some item sequence
encoders with different configurations to learn the item transition
patterns at both the behavior-agnostic and behavior-specific levels.
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Moreover, in order to address the intention heterogeneity issue and
transfer different behavior-specific knowledge to varying degrees,
we design a target-behavior aware context aggregator (TBCG) to
exploit the next behavior to guide all kinds of behavior-specific
item sub-sequences to jointly predict the next interaction. Thirdly,
we introduce a second task that focuses on distinguishing the real
purchase from the previous other auxiliary behaviors. Specifically,
we design a behavior-aware self-attention (BSA) mechanism to
extract a user’s behavior-specific interests (i.e., virtual items) in a
certain time interval and treat them as the negative samples to help
learn the purchase preferences more effectively.

We summarize our main contributions as follows.

• We propose a novel solution named NextIP for an impor-
tant and emerging problem, i.e., multi-behavior sequential
recommendation (MBSR), which studies the problem from a
new perspective by converting it to a next-item prediction
task and a purchase prediction task.

• In the first task, we design a novel target-behavior aware
context aggregator (TBCG) to achieve knowledge transfer
among different sub-sequences, which helps predict the next
item in a behavior-aware manner more accurately.

• In the second task, we explicitly model the heterogeneous
transitions from a user’s perspective via a novel behavior-
aware self-attention (BSA) mechanism.

• We conduct extensive empirical studies on two real-world
datasets and compare our NextIP with fifteen state-of-the-
art methods, and show its effectiveness from five different
angles.

2 RELATEDWORK
In this section, we review some representative methods in single-
behavior sequential recommendation, multi-behavior recommenda-
tion and multi-behavior sequential recommendation, respectively.

2.1 Single-Behavior Sequential
Recommendation

The earliest works of sequential recommendation are based on
Markov chains (MCs) and matrix factorization (MF) models. For in-
stance, FPMC [26] models the long-term and short-term preferences
of a user viaMF and first-orderMCs. Fossil [10] replaces theMF com-
ponent in FPMCwith the factored item similarity model (FISM) [15]
and uses high-order MCs to consider more than one previous item.
Besides, some researchers [9, 17] propose some translation-based
methods for maintaining the triangle inequality in sequential data.
With the development of deep learning, various techniques are
applied to sequential recommendation. Recurrent neural network
(RNN) is probably the very first technique due to its instincts of
modeling sequential patterns [5, 13]. Convolutional neural network
(CNN)-based methods such as Caser [28] and NextItNet [43] have
also been proposed to consider skip connections and transitions at
union-level. Based on the success of Transformer and the attention
mechanism in NLP [30], SASRec [16] is proposed to use some self-
attentionmodules to encode the sequential information of historical
sequences. BERT4Rec [27] borrows the idea of the cloze task in NLP
and trains a model in a bidirectional manner. FISSA [19] combines

SASRec with a global preference learning model in a balanced way,
which is found to be very effective for sequential recommendation.

In addition, many researchers propose to leverage graph neural
network (GNN) to model the sequential data, especially in session-
based recommendation [24, 33, 35, 40], where one important dif-
ference between session-based recommendation and sequential
recommendation is that the data of the former is from anonymous
users and the sequences are often relatively short [31].

2.2 Multi-Behavior Recommendation
Some works on multi-behavior recommendation (MBR) are based
on MF models. For instance, adaptive BPR (ABPR) [23] learns
the weight of different auxiliary behaviors adaptively and multi-
channel BPR [20] proposes to sample some negative items from
different behavior channels differently. Recently, deep learning-
based methods show promising performance in MBR [2, 3, 37].
NMTR [6] extends NCF [11] to deal with a multi-behavior data
with a multi-task framework. Moreover, many researchers propose
to leverage GNN to capture the different relations between users
and items. MBGCN [14] proposes to construct a (user, item) bi-
partite graph with multiple kinds of edges that represent different
behaviors and uses graph convolutional network to enhance the
representation learning. MB-GMN [38] further proposes a graph
meta network to capture different behavior semantics and rela-
tions, which is found to be very effective in MBR. VAE++ [21] is
the most recent variational autoencoder (VAE)-based method that
simultaneously models three types of signals, including the target
behavior, the auxiliary behavior and their mixed behaviors with
multiple encoders and one single decoder. There are also some
recent MBR methods that adopt contrastive learning to model the
differences and correlations among different behavioral patterns of
users [34, 36, 41], which is similar to our motivation in the purchase
prediction task.

It is worth mentioning that there are some significant differences
between MBR and MBSR, because capturing the complex sequen-
tial information (e.g., global/local preferences, behavior transitions,
behavior tendency/continuity, long/short sequences, periodicity,
etc.) is not a trivial task. This actually motivates numerous works
on sequential recommendation (including a few studies on MBSR).
Our empirical studies also show that capturing the sequential infor-
mation is critical in delivering accurate recommendation services.

2.3 Multi-Behavior Sequential
Recommendation

Though there are lots of works on multi-behavior recommenda-
tion [4], few of them pay attention to modeling the sequential
dynamics in MBSR.

Existing works on MBSR can be divided into two categories
according to the modeling perspectives. The first category is to
model the behavior-agnostic item sequences and the correspond-
ing behavior sequences [18, 22], which either uses the behavior
sequence to enrich the input of the model or directly models the
behavior sequences. For instance, RIB [44] concatenates a behav-
ior embedding and an item embedding in the input layer of GRU.
ASLI [29] uses a self-attention layer to model the item sequences,
and a convolutional network to leverage the behavior and category
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sequences to learn a user’s intents. MKM-SR [22] adopts a gated
GNN (GGNN) to model the behavior-agnostic item sequence of a
session and uses a GRU layer to model the corresponding behavior
sequence to obtain the behavior representation at each step. The
advantage of this type of methods is that they allow the models to
distinguish different types of behaviors while retaining the integrity
of an entire interaction sequence.

The second category is to divide a multi-behavior interaction se-
quence into some behavior-specific item sub-sequences and model
them jointly [39, 42]. For example, MGNN-SPred [32] constructs
a multi-relational item graph based on different behavior-specific
item sequences for capturing the examination-to-examination and
purchase-to-purchase relationships. DMT [7] proposes a deep inter-
est Transformer to model each behavior-specific item sequence for
the subsequent CTR task and CVR task. The merit of this modeling
perspective is that the problem can be simplified into modeling the
item sequences since the semantics of each behavior type can be
learned via different parameters.

Different from the above approaches, we propose a newmodeling
perspective for MBSR that leverages all the behavior sequences,
behavior-agnostic and behavior-specific item sequences in a unified
and complementary way. Moreover, we address the heterogeneity
challenge and the sparsity challengewell in the next-item prediction
task and purchase prediction task, respectively. Note that though
MKM-SR [22] also adopts multi-task learning by introducing an
auxiliary task of learning knowledge embeddings from a knowledge
graph, our NextIP is different from it by converting the MBSR
problem to two specific tasks, i.e., next-item prediction and purchase
prediction.

3 PRELIMINARIES
In this section, we first formally define the problem and give an
overview of the proposed method as shown in Figure 1.

3.1 Problem Definition
In a real-world platform such as an e-commerce site, we have a set
of usersU = {𝑢} and a set of items I = {𝑖}, where users’ behaviors
to items can be of multiple typesB= {𝑒, 𝑓 , 𝑐, 𝑝} such as examination
(𝑒), add-to-favorite (𝑓 ), add-to-cart (𝑐) and purchase (𝑝). Each user 𝑢
is associated with an interaction sequence of (item, behavior) pairs
S𝑢 =

{(
𝑖1𝑢 , 𝑏

1
𝑢

)
, . . . ,

(
𝑖ℓ𝑢 , 𝑏

ℓ
𝑢

)
, . . . ,

(
𝑖𝐿𝑢 , 𝑏

𝐿
𝑢

)}
, where 𝑖ℓ𝑢 ∈ I denotes

the ℓth item interacted by user 𝑢 with behavior 𝑏ℓ𝑢 ∈ B.
The goal of multi-behavior sequential recommendation (MBSR)

is then to exploit the information in S𝑢 and recommend the next
likely-to-purchase item for each user 𝑢.

3.2 Challenges
For the studied MBSR problem, there are two specific challenges
that remained to be addressed. From the perspective of sequence,
users often have different behavioral intentions (i.e., examination,
purchase) at different time steps, and there are different contextual
information of behaviors in the historical process. Therefore, the
first challenge is the heterogeneity of a user’s intention and the
context information, i.e., how to adaptively utilize heterogeneous

Table 1: Some notations and their explanations used in the
paper.

U = {𝑢} the whole set of users
I = {𝑖} the whole set of items
B the set of behaviors
𝑖ℓ𝑢 ∈ I the ℓth item interacted by user 𝑢
𝑏ℓ𝑢 ∈ B the ℓth behavior type interacted by user 𝑢
S𝑢 = {

(
𝑖ℓ𝑢 , 𝑏

ℓ
𝑢

)
} the interaction sequence of user 𝑢

𝑑 ∈ R number of latent dimensions
𝐿 ∈ R length of the sequence
𝑼 ∈ R |U |×𝑑 user embedding matrix
𝒖𝑢 ∈ R1×𝑑 user embedding of user 𝑢
𝑯 ∈ R |I |×𝑑 item embedding matrix
𝒉𝑖 ∈ R1×𝑑 item embedding of item 𝑖

𝑩 ∈ R |B |×𝑑 behavior embedding matrix
𝒃𝑏ℓ𝑢 behavior embedding of user 𝑢 at step ℓ
𝑷 ∈ R𝐿×𝑑 position embedding matrix
𝑆𝐴𝐵(·) self-attention block

𝑿 (𝑘)
𝑢 ∈ R𝐿×𝑑 representation matrix of a behavior-agnostic

item sequence in 𝑘th layer of SAB

𝑿𝑒 (𝑘)𝑢 ∈ R𝐿×𝑑 representation matrix of an examination-specific
item sequence in 𝑘th layer of SAB

𝒙𝑢,ℓ ∈ R1×𝑑
behavior-agnostic sequence representation of user 𝑢
at step ℓ

𝒈′
𝑢,ℓ

∈ R1×𝑑 behavior-aware context representation of user 𝑢
at step ℓ

contextual information for a user with different behavioral inten-
tions. From the perspective of behavior, the second challenge lies
in the sparsity of the data of target behavior, hindering us to learn
a user’s purchase preferences effectively.

3.3 Overview
As a response to the aforementioned two challenges, we propose a
novel and effective framework namedNextIP that adopts a dual-task
learning strategy to convert the problem to two specific tasks, i.e.,
next-item prediction and purchase prediction. Firstly, we address
the heterogeneity challenge in task 1 (in the bottom left corner
of Figure 1) by designing a novel target-behavior aware context
aggregator (TBCG) to transfer the unique knowledge of different
types of behaviors so as to predict the next item in a behavior-aware
manner. Secondly, we address the sparsity challenge in task 2 (in
the bottom right corner of Figure 1). Specifically, all the items that
a user has interacted with are treated as positive samples in task
1, while in task 2, we propose to treat the items associated with
auxiliary behaviors as negative signals to refine the learning of a
user’s purchase-oriented preferences.

4 PROPOSED METHODOLOGY
In this section, we introduce each component of our NextIP in detail.
We list some notions and their explanations used in this paper in
Table 1.

4.1 Embedding Layer
First of all, we present an embedding layer to convert an input
multi-behavior interaction sequence S𝑢 to different embeddings.
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Figure 1: The overview of our proposed NextIP. The pipeline of our NextIP is illustrated in the upper half part. In general,
our NextIP takes a multi-behavior interaction sequence of user 𝑢 as input and obtains the representations of the behavior
sequence, each behavior-specific item sub-sequence and the behavior-agnostic item sequence as well as the user embedding
in the embedding layer. These representations are then fed into two well-designed tasks, i.e., a next-item prediction task (in
the bottom left corner) and a purchase prediction task (in the bottom right corner) to capture both the user’s behavior-aware
short-term interests and purchase-oriented long-term preferences, which are finally used to fulfill the final prediction.

We have a learnable behavior embedding matrix 𝑩 ∈ R |B |×𝑑 , an
item embedding matrix 𝑯 ∈ R |I |×𝑑 , a position embedding matrix
𝑷 ∈ R |𝐿 |×𝑑 and a user embedding matrix 𝑼 ∈ R |U |×𝑑 , where 𝑑
is the size of latent dimension. Through embedding look-up op-
erations from 𝑯 , we can retrieve and stack the item embeddings
of S𝑢 as an embedding matrix 𝑬 =

[
𝒉𝑖1𝑢 ; . . . ;𝒉𝑖ℓ𝑢 ; . . . ;𝒉𝑖𝐿𝑢

]
∈ R𝐿×𝑑 .

Following [16], the representation of a behavior-agnostic item se-
quence can be obtained by adding two embedding matrices, i.e.,
𝑿 (0)
𝑢 = 𝑬 + 𝑷 .
In order to unlock the potential of a multi-behavior interaction

sequence, we further represent a user’s behavior-specific item se-
quence by behavior-specific masking. Without loss of generality,
we take the examination-specific item sequence as an example,

𝑿𝑒 (0)𝑢 = 𝑿 (0)
𝑢 ⊗ 𝑴𝒆, (1)

where ⊗ is the element-wise product.𝑴𝑒 = [𝒎𝑒1; . . . ;𝒎
𝑒
ℓ
; . . . ;𝒎𝑒

𝐿
] ∈

R𝐿×𝑑 denotes the examination-specific mask matrix, in which𝒎𝑒
ℓ
is

a vector of ones if 𝑏ℓ𝑢 = 𝑒 , and a vector of zeros otherwise. Similarly,
we can obtain 𝑿

𝑓 (0)
𝑢 ,𝑿𝑐 (0)𝑢 and 𝑿

𝑝 (0)
𝑢 as the embedding matrices

of the other three behavior-specific item sequences.

4.2 Task 1: Next-Item Prediction
The first task is to predict the next item in a behavior-aware manner
by utilizing the behavior sequences, behavior-specific and behavior-
agnostic item sequences in a unified and complementary way. In

this task, we first encode the behavior-agnostic preferences and
behavior-specific context in an item sequence encoder and then
introduce a novel target-behavior aware context aggregator (TBCG)
to transfer the unique knowledge of different types of behaviors.

4.2.1 Item Sequence Encoder. To obtain different context informa-
tion in all the behavior-agnostic and behavior-specific sequences,
we choose self-attention block (SAB) [16] for the item sequence
encoder since it is known effective. Moreover, the parameters of
each self-attention network are independent across different kinds
of item sequences, which are used to capture different semantic
information and transition patterns. For instance, the transitions in
an examination-specific item sequence usually indicate similarity
among the items while those in a purchase-specific item sequence
often mean complementarity to some extent.

Omitting the formulas of the layer normalization and residual
connection, each SAB consists of a self-attention layer (SAL), and a
feed-forward layer (FFL),

𝑆𝐴𝐵(𝑿 ) = 𝐹𝐹𝐿(𝑆𝐴𝐿(𝑿 )), (2)

𝑿 ′ = 𝑆𝐴𝐿(𝑿 ) = (𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑸𝑲𝑇
√
𝑑

) ⊗ 𝚫)𝑽 , (3)

𝐹𝐹𝐿(𝑿 ′) = 𝑅𝑒𝐿𝑈 (𝑿 ′𝑾1 + 𝒃1)𝑾2 + 𝒃2, (4)

where 𝑸 =𝑿𝑾𝑄 , 𝑲 =𝑿𝑾𝐾 and 𝑽 =𝑿𝑾𝑉 with 𝑾𝑄 ,𝑾𝐾 ,𝑾𝑉 ∈
R𝑑×𝑑 are the projected query, key and value matrices, respectively.
Note that

√
𝑑 in SAL(·) is the scaling factor to prevent overlarge
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values of the inner product and 𝚫 is the causality mask used to
ensure that only the previous ℓ items are taken into account when
predicting the (ℓ + 1)th item.𝑾1,𝑾2 ∈ R𝑑×𝑑 and 𝒃1, 𝒃2 ∈ R1×𝑑 are
learnable weights and biases of the two-layer network, respectively.

By feeding 𝑿 (0)
𝑢 into the corresponding 𝐾 layers of SABs, we

can obtain 𝑿 (𝐾)
𝑢 = [𝒙 (𝐾)

𝑢,1 ; . . . ; 𝒙
(𝐾)
𝑢,ℓ

; . . . ; 𝒙 (𝐾)
𝑢,𝐿

], where 𝒙 (𝐾)
𝑢,ℓ

∈R1×𝑑
denotes the representation of the user’s behavior-agnostic context
at step ℓ . Similarly, we can obtain 𝑿𝑒 (𝐾)𝑢 ,𝑿

𝑓 (𝐾)
𝑢 ,𝑿𝑐 (𝐾)𝑢 ,𝑿

𝑝 (𝐾)
𝑢 for

the behavior-specific item sequences. Note that we remove the
superscript 𝐾 for brevity in Figure 1 and in the subsequent text.

4.2.2 Target-Behavior Aware Context Aggregator. Different types of
behavior-specific item sequences can provide different contextual
information, which thus should be explicitly exploited. For instance,
the records of a user’s recent examinations on some earphones are
useful signals that the next purchase might be an earphone, and
knowing a user bought an iPhone last month can inform us to
predict that the user is likely to buy an AirPods.

However, the context information needs to be well balanced
when predicting different behaviors, since the dependency across
different behaviors is complex. Therefore, we design a target-behavior
aware context aggregator (TBCG), which takes a user’s target be-
havior embedding to improve the context aggregation. Specifically,
at the current step ℓ , we stack up the context representations of dif-
ferent behaviors (i.e., [𝒙𝑒

𝑢,ℓ
; 𝒙 𝑓
𝑢,ℓ

; 𝒙𝑐
𝑢,ℓ

; 𝒙𝑝
𝑢,ℓ

]) and take them as keys
and values, while leveraging the user’s behavior embedding at the
next step 𝒃𝑏ℓ+1𝑢

as a query to adaptively extract the context that is
more relevant to predict the next item,

𝑸 ′
ℓ = 𝒃𝑏ℓ+1𝑢

𝑾𝑄′, (5)

𝑲 ′
ℓ = [𝒙𝑒𝑢,ℓ ; 𝒙

𝑓

𝑢,ℓ
; 𝒙𝑐𝑢,ℓ ; 𝒙

𝑝

𝑢,ℓ
]𝑾𝐾 ′, (6)

𝑽 ′
ℓ = [𝒙𝑒𝑢,ℓ ; 𝒙

𝑓

𝑢,ℓ
; 𝒙𝑐𝑢,ℓ ; 𝒙

𝑝

𝑢,ℓ
]𝑾𝑉 ′, (7)

𝒈𝑢,ℓ = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (
𝑸 ′
ℓ
𝑲 ′
ℓ
𝑇

√
𝑑

)𝑽 ′
ℓ , (8)

where 𝑸 ′
ℓ
∈R1×𝑑 , 𝑲 ′

ℓ
∈R4×𝑑 and 𝑽 ′

ℓ
∈R4×𝑑 are the projected query,

key and value matrices, respectively. And𝑾𝑄′,𝑾𝐾 ′,𝑾𝑉 ′ ∈ R𝑑×𝑑
are the learnable weight matrices. Note that 𝒈𝑢,ℓ denotes the gated
context representation of user 𝑢 at step ℓ considering the user’s
target behavior.

After that, we can further obtain the refined behavior-aware
context representation by combining 𝒈𝑢,ℓ with the context repre-
sentation of user 𝑢 at step ℓ for behavior type ∗, i.e., 𝒙∗

𝑢,ℓ
, via mean

pooling,

𝒈′𝑢,ℓ =
𝒈𝑢,ℓ + 𝒙∗

𝑢,ℓ

2
, (9)

where ∗ denotes the next behavior of the current step, i.e., 𝑏ℓ+1𝑢 ∈ B.
We find that setting theweight of the elements uniformly often leads
to good performance in our empirical studies. The main idea behind
Eq.(9) is to enhance the contribution of the context representation
of the next behavior type at the current step in the training phase.
Note that in the evaluation phase, we will fix the next behavior type
as purchase 𝑝 , since our goal is next purchased item prediction.

Notably, to facilitate matrix-level operations, we utilize sequen-
tial padding to fill the empty values of each behavior-specific con-
text matrix to ensure that the vector at step ℓ corresponds to the
behavior-specific context information of the most recent step. Fi-
nally, we predict the probability that user 𝑢 will interact with item
𝑖 at the (ℓ + 1)th step as follows,

𝑟ℓ+1,𝑖 = (𝒙𝑢,ℓ + 𝒈′𝑢,ℓ ) (𝒉𝑖 )
𝑇 . (10)

We adopt the typical binary cross-entropy loss for task 1, which
is the same as that in the seminal method SASRec [16],

L1=−
∑︁
𝑢∈U

𝐿+1∑︁
ℓ=2

𝛿 (𝑖ℓ𝑢 ) [log(𝜎 (𝑟ℓ,𝑖ℓ𝑢 ))+log(1−𝜎 (𝑟ℓ, 𝑗 ))], (11)

where 𝑗 is a negative item randomly sampled from I\𝑆𝑢 for each
position ℓ ∈ {2, ..., 𝐿 + 1}. The indicator function 𝛿 (𝑖ℓ𝑢 ) = 1 if 𝑖ℓ𝑢 is
not a padding item, and 0 otherwise. The indicator function 𝛿 (𝑖ℓ𝑢 )
is used to ignore the loss value when 𝑖ℓ𝑢 is a padding item, since we
follow the common practice and use a padding item to pad the user
sequence to a same length 𝐿.

4.3 Task 2: Purchase Prediction
Task 1 is designed to predict the next item of all behaviors and
to learn a user’s short-term interests while task 2 aims to learn
a user’s purchase-oriented long-term preferences. In addition, a
user’s purchase behavior is often much sparser in his or her interac-
tion history, hindering us to learn the user’s purchase preferences
effectively.

To address the above issues, we leverage a user’s behavior tran-
sitions to learn his or her purchase-oriented preferences in a self-
supervised manner. For instance, users often interact with different
brands of earphones for comparison via some auxiliary behaviors
(e.g., examination) before making a purchase decision. If a user fi-
nally chooses to purchase an item instead of other interacted items,
this contains fine-grained information about the user’s purchase
preferences. Therefore, we should pay attention to distinguishing
the purchased item from the previous items with some auxiliary
behaviors.

4.3.1 Behavior-Aware Self-Attention. The intentions reflected in
a user’s interaction history are usually diverse and uncertain. For
example, a user might examine clothes before purchasing an ear-
phone, and thus assuming the user prefers the earphone to each
cloth may not be reasonable. To alleviate this uncertainty issue, we
design a behavior-aware self-attention (BSA) mechanism to aggre-
gate the collection of the historically interacted items of each kind
of behavior into a virtual item w.r.t. each step. Firstly, we create an
attention mask as follows,

𝑨 = 𝑴 ⊗ 𝚫, (12)

where𝑴 ∈R𝐿×𝐿 denotes the behavior-aware attentionmask,𝑴ℓ,ℓ′ =

1 if 𝑏ℓ𝑢 = 𝑏ℓ
′
𝑢 and ℓ − ℓ ′ ≤ 𝐿𝑐𝑙𝑖𝑝 , and 𝑴ℓ,ℓ′ = 0 otherwise. The usage

of a length clip is to ensure that the aggregated items correspond
to a similar intention of user 𝑢. In order to further illustrate the
attention mask in our NextIP shown in Eq.(12), we give an exam-
ple in Figure 2. Next, we can use self-attention to aggregate each
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Figure 2: An example of the attention mask in our NextIP.

behavior-specific item set into a virtual item representation,

𝑵𝑢 = (𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑸
′′𝑲 ′′𝑇
√
𝑑

) ⊗ 𝑨)𝑽 ′′, (13)

where 𝑸 ′′ = 𝑬𝑾𝑄′′ , 𝑲 ′′ = 𝑬𝑾𝐾 ′′ and 𝑽 ′′ = 𝑬𝑾𝑉 ′′ with 𝑾𝑄′′ ,
𝑾𝐾 ′′ , 𝑾𝑉 ′′ ∈ R𝑑×𝑑 as the projected query, key and value ma-
trices, respectively. After BSA, for user 𝑢, we can obtain 𝑵𝑢 =

[𝒏𝑢,1; . . . ; 𝒏𝑢,ℓ ; . . . ; 𝒏𝑢,𝐿], where 𝒏𝑢,ℓ ∈ R1×𝑑 denotes the represen-
tation of a virtual item that user 𝑢 has recently interacted with
using a certain behavior at step ℓ .

We then treat the virtual items’ representations of every auxiliary
behavior (e.g., examination) before a purchased item as negative
samples, which will be used to learn the user’s purchase-oriented
preferences. We adopt the contrastive loss function to train the
model as follows,

𝑔(𝒉𝑦)=exp
(
𝒖𝑢𝑾𝒉𝑇𝑦/𝜌

)
, (14)

𝑔(𝒏𝑢,𝑡 )=exp
(
𝒖𝑢𝑾𝒏𝑇𝑢,𝑡/𝜌

)
, (15)

L2 = −
∑︁
𝑢∈U

∑︁
𝑦∈Y𝑢

log
𝑔(𝒉𝑦)

𝑔(𝒉𝑦) +
∑
𝑡 ∈T (𝑢,𝑦) 𝑔(𝒏𝑢,𝑡 )

, (16)

where 𝑦 ∈Y𝑢 is an item purchased by user 𝑢, 𝒖𝑢 ∈ R1×𝑑 denotes
the user embedding, and 𝜌 is the temperature parameter. 𝑾 is a
learnable weight matrix to perform feature transformation, and
T (𝑢,𝑦) is a set containing the step indices of each type of auxil-
iary behavior that is closest to the user’s purchased item 𝑦. Apart
from the contrastive loss in Eq.(16), we can also use a BPR loss to
distinguish positive samples from negative ones.

4.4 Learning and Final Prediction
We train our NextIP in an end-to-end fashion by minimizing the
loss on both task 1 and task 2,

L = L1 + L2 . (17)

Note that simply setting the weight of L2 to 1 often leads to good
performance in our empirical studies.

Finally, we can predict the probability that user 𝑢 will purchase
item 𝑖 at the (ℓ + 1)th step as follows,

𝑜ℓ+1,𝑖 = 𝒛ℓ (𝒉𝑖 )𝑇 . (18)

where 𝒛ℓ = 𝒙𝑢,ℓ + 𝒈′
𝑢,ℓ

+ 𝒖𝑢 . Note that 𝒙𝑢,ℓ and 𝒈′𝑢,ℓ are optimized
in L1 while 𝒖𝑢 is optimized in L2.

Dataset # Users # Items Avg. Length Behavior set
UB 20,858 30,853 33.71 {𝑒, 𝑓 , 𝑐, 𝑝}
Tmall 17,209 16,174 48.60 {𝑒, 𝑓 , 𝑝}

Table 2: Statistics of the processed datasets, where Avg.
Length denote the average length of users’ interaction se-
quences in the datasets, and 𝑒, 𝑓 , 𝑐 and 𝑝 denote examination,
add-to-favorite, add-to-cart and purchase, respectively.

5 EXPERIMENTS
In this section, we first introduce the datasets and the experimental
settings. Then, we conduct extensive empirical studies to investigate
the following four research questions:

• RQ1: How does our NextIP perform when competing with
the state-of-the-art baselines?

• RQ2: What is the impact of different components in our
NextIP?

• RQ3: What is the impact of the different behavior-specific
item sub-sequences in our NextIP?

• RQ4: What is the rationality of our NextIP? How impor-
tant are different source behaviors in predicting different
behaviors?

5.1 Datasets and Evaluation Metrics
We conduct offline experiments (online training and inference is an
important future direction) on two public and real-world datasets in
e-commerce scenarios, i.e., Tmall1 and User Behavior (UB)2, which
are released at the IJCAI Competitions 2015 and 2016, respectively.
Both datasets contain different types of behaviors, i.e., examina-
tion, add-to-favorite, add-to-cart and purchase. We preprocess the
datasets as follows: (i) for duplicated (user, item, behavior) tuples in
a sequence, we only retain the first one; (ii) we discard the cold-start
items with fewer than 10 and 20 purchase interactions for UB and
Tmall, respectively; (iii) we discard the cold-start users with fewer
than 5 and 10 purchase interactions for UB and Tmall, respectively;
(iv) we remove the records of adds-to-cart in Tmall because of its
rarity; (v) for each user, we take the last two purchase interactions
as the validation and test data (note that the interactions between
them are kept in final evaluation), and those before the penultimate
purchase as the training data; and (vi) for the preferred items in
the test data of each user, we remove them from the training data
since we aim to recommend new items [32]. The statistics of the
processed datasets are summarized in Table 2.

We evaluate the recommendation performance via recall (Rec@𝑁 )
and normalized discounted cumulative gain (NDCG@𝑁 ), where
𝑁 ∈ {1, 5, 10}. Rec@𝑁 means the proportion of cases when the
preferred item is in a top-𝑁 recommendation list, while NDCG@𝑁
pays attention to whether it has a relatively high-ranking position.
We follow [16, 19] and prepare a candidate list with 100 randomly
sampled un-interacted items according to the item popularity for
each user. Note that we also report the experimental results un-
der the full-ranking setting, in which all items are considered as
candidates without sampling.

1https://tianchi.aliyun.com/dataset/dataDetail?dataId=42
2https://tianchi.aliyun.com/dataset/dataDetail?dataId=649
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5.2 Baselines and Parameter Configurations
To show the effectiveness of our NextIP, we compare it with four
groups of baselines. The first group contains two classic single-
behavior recommendation (SBR) methods:
BPRMF [25]. A non-sequential model that optimizes matrix fac-
torization using a pairwise ranking loss.
FISM [15]. A non-sequential model that represents a user with his
or her interacted items.

The second group contains two state-of-the-art multi-behavior
recommendation (MBR) methods:
MB-GMN [38]. A state-of-the-art GNN-basedmulti-behaviormodel
that incorporates a graph meta network to learn multi-behavior
patterns.
VAE++ [21]. A state-of-the-art VAE-based multi-behavior model
that utilizes three types of signals, including the purchases, the
examinations and their mixed behaviors.

The third group contains six single-behavior sequential recom-
mendation (SBSR) methods:
FPMC [26]. A classic sequential model based on matrix factoriza-
tion and first-order Markov chains (MCs).
Fossil [10]. A classic sequential model which combines FISM [15]
and high-order MCs to consider more than one previous item.
GRU4Rec+ [12]. An RNN-basedmodel which improves GRU4Rec [13]
by applying a BPR-max loss and an additional sampling strategy.
Caser [28]. A CNN-based model that utilizes some horizontal and
vertical convolutional filters to capture different sequential patterns.
SASRec [16]. A pioneeringmodel based on hierarchical self-attention
modules.
FISSA [19]. A recent model for sequential recommendation that
uses SASRec to learn a user’s local preferences, an attentive version
of FISM to learn his or her global preferences, and a gating module
for balancing these two parts.

The fourth group contains five multi-behavior sequential recom-
mendation (MBSR) methods:
RIB [44]. An RNN-based model that takes the concatenation of the
item embedding and the behavior embedding as the input of a GRU
layer.
BINN [18]. An RNN-based model that designs a contextual long
short-term memory (CLSTM) structure to model the item and be-
havior sequences.
MGNN-SPred [32]. A GNN-based model for MBSR that constructs
a multi-relational item graph based on all kinds of behavior-specific
item sub-sequences.
M-SR [22]. A GNN-based model that uses a gated GNN (GGNN)
to model the item sequences and uses a GRU layer to model the
sequential patterns from sequences of operations (i.e., behavior
types). Note that M-SR is a reduced version of MKM-SR without
the knowledge graph.
ASLI [29]. A recent model that uses a self-attention layer to model
the item sequences, and a convolutional network to leverage the
behavior and category sequences to obtain the users’ intents, which
are then used to query the relevant items. Note that we do not use
the category sequences in the studied problem in this paper.

For RIB, BINN and ASLI, we implement them by TensorFlow. For
other methods, we use the code released by their authors3,4,5,6,7,8,9
10. For fair comparison, we fix the embedding dimension 𝑑 of tune
all models as 50 and all the hyper-parameters on the validation data
following the suggestions in the original papers. For our NextIP,
following [16, 19], we set the sequence length 𝐿 to 50, the batch
size to 128, the dropout rate to 0.5, and adopt the Adam optimizer
with a learning rate of 0.001. The length clip 𝐿𝑐𝑙𝑖𝑝 in BSA is set to
10 and the temperature parameter 𝜌 of the contrastive loss is set to
0.07 [8]. The number of self-attention layers for all kinds of item
sequences are searched from 𝐾 ∈ {1, 2, 3} [16, 19].

5.3 Results
5.3.1 Main Results (RQ1). We report the experimental results of
fifteen baselines and our NextIP in Table 3. To further verify the
effectiveness of our NextIP, we also report the experimental results
of four representative baselines from four different groups and our
NextIP under the full-ranking setting (i.e., all items are candidates)
in Table 4. The best one of each column is marked in bold and the
second best one is underlined.

For non-sequential single-behavior recommendation methods,
FISM beats BPRMF in most cases, which indicates that modeling of
user representation from all the interacted items can often lead to
performance improvement.

For non-sequential multi-behavior recommendation methods,
both the GNN-based method MB-GMN and VAE-based method
VAE++ outperform the single-behavior recommendation methods
in all cases, indicating the benefits of mining multi-behavior prefer-
ences. However, the performance of these two state-of-the-art MBR
methods is worse than deep-learning-based SBSR methods and
MBSR methods. It indicates that capturing the complex sequential
information (e.g., global or local preferences, behavior transitions,
behavior dependency, etc.) is critical in sparse sequence data.

Among the methods for sequential recommendation, we can
have the following observations.

• Thesemethods surpass the non-sequential methods to a large
extent in all cases, showing the importance of modeling the
sequential information.

• SASRec and FISSA consistently perform better than Caser
and GRU4Rec+ on both datasets, which is consistent with
the observations in previous studies [16, 19] and indicates
the advantage of a self-attention network for modeling the
item sequences.

Among the methods for multi-behavior sequential recommenda-
tion, we can observe the following phenomena.

• The RNN-based methods, i.e., RIB and BINN, beat the single-
behavior sequential method GRU4Rec+, which showcases
that their modeling of the behavior sequences to distinguish
different preferences of users benefits the performance.

3https://cseweb.ucsd.edu/~jmcauley/
4https://github.com/hidasib/GRU4Rec
5https://github.com/graytowne/caser_pytorch
6http://csse.szu.edu.cn/staff/panwk/publications/FISSA/
7https://github.com/ciecus/MKM-SR
8https://github.com/Autumn945/MGNN-SPred
9https://github.com/akaxlh/MB-GMN
10https://csse.szu.edu.cn/staff/panwk/publications/VAEplusplus/
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Model UB Tmall
Rec@1 Rec@5 NDCG@5 Rec@10 NDCG@10 Rec@1 Rec@5 NDCG@5 Rec@10 NDCG@10

BPRMF 0.086 0.211 0.149 0.309 0.181 0.050 0.166 0.108 0.266 0.140
FISM 0.095 0.246 0.172 0.362 0.209 0.046 0.171 0.109 0.273 0.142

MB-GMN 0.094 0.251 0.175 0.364 0.208 0.061 0.211 0.136 0.342 0.181
VAE++ 0.139 0.290 0.215 0.398 0.250 0.088 0.238 0.167 0.360 0.203
FPMC 0.104 0.257 0.182 0.372 0.219 0.112 0.277 0.196 0.394 0.234
Fossil 0.085 0.219 0.153 0.319 0.185 0.094 0.244 0.169 0.356 0.206

GRU4Rec+ 0.225 0.367 0.300 0.451 0.327 0.195 0.381 0.291 0.493 0.327
Caser 0.187 0.353 0.274 0.444 0.304 0.161 0.384 0.275 0.514 0.317
SASRec 0.226 0.446 0.341 0.556 0.376 0.210 0.481 0.351 0.616 0.395
FISSA 0.224 0.493 0.364 0.622 0.405 0.195 0.484 0.344 0.634 0.392
RIB 0.214 0.390 0.306 0.488 0.337 0.205 0.425 0.319 0.547 0.359
BINN 0.223 0.402 0.316 0.505 0.349 0.223 0.434 0.332 0.552 0.370

MGNN-SPred 0.146 0.291 0.220 0.392 0.253 0.165 0.391 0.282 0.521 0.324
M-SR 0.224 0.401 0.316 0.500 0.348 0.217 0.426 0.325 0.547 0.365
ASLI 0.230 0.452 0.347 0.562 0.382 0.215 0.490 0.359 0.623 0.402
NextIP 0.247 0.509 0.384 0.632 0.423 0.246 0.548 0.403 0.681 0.446

Table 3: Recommendation performance of our NextIP and four groups of baselines on UB and Tmall. Note that the best one of
each column is marked in bold, and the second best result is underlined.

Dataset Metric BPRMF VAE++ SASRec ASLI NextIP

UB

Rec@5 0.0143 0.0377 0.0436 0.0423 0.0448

NDCG@5 0.0086 0.0250 0.0224 0.0221 0.0231

Rec@10 0.0281 0.0564 0.0766 0.0731 0.0790

NDCG@10 0.0130 0.0310 0.0331 0.0320 0.0340

Tmall

Rec@5 0.0094 0.0255 0.0488 0.0514 0.0542

NDCG@5 0.0057 0.0175 0.0271 0.0283 0.0314

Rec@10 0.0189 0.0387 0.0821 0.0859 0.0896

NDCG@10 0.0087 0.0217 0.0379 0.0394 0.0428

Table 4: Recommendation performance of our NextIP and
four representative baselines on UB and Tmall under the
full-ranking setting, in which all items are considered as
candidates. Note that the best one of each column is marked
in bold, and the second best result is underlined.

• MGNN-SPred performs poorly in our setting, which is be-
lieved because of uncompetitiveness of GNN-based methods
for sequential recommendation. This is also observed by
other researchers [1].

• ASLI outperforms BINN on both datasets, especially when
coping with longer sequences in Tmall. The reason is that
ASLI introduces an additional convolution module and an
auxiliary loss to force the model to predict the next latent in-
tent (i.e., the behavior type in our case), and the self-attention
network is more suitable for modeling long item sequences
than RNN.

The experimental results in Table 4 shows the same tendency
as that in Table 3. Our NextIP consistently achieves the best per-
formance on both datasets comparing with all the baselines, which
clearly demonstrates its superiority in modeling users’ sequential
and heterogeneous behaviors. Different from all the existing MBSR
methods, our NextIP adopts a dual-task learning strategy to utilize

the behavior sequences, behavior-specific and behavior-agnostic
item sequences in a novel and unified way. In addition, we address
the heterogeneity challenge in task 1 and the sparsity challenge in
task 2, leading to significantly better performance.

5.3.2 Ablation Study (RQ2). In order to understand the contribu-
tion of different components to the performance of our NextIP, we
conduct an ablation study and report the results in Table 5. We
have the following observations.

• By removing the target-behavior aware context aggrega-
tor (TBCG) in task 1 and the behavior-aware self-attention
(BSA) mechanism in task 2, our NextIP reduces to SASRec,
i.e., NextIP(w/o TBCG&BSA), which only contains task 1 and
utilizes the behavior-agnostic item sequences. The improve-
ment of NextIP(w/o TBCG) over NextIP(w/o TBCG&BSA)
demonstrates the rationality of constructing the purchase
prediction task to exploit the heterogeneous transitions from
auxiliary behaviors to target behaviors in a user’s perspec-
tive.

• The performance gap between NextIP(w/o TBCG&BSA) and
NextIP(w/o BSA) indicates that transferring the unique knowl-
edge of different types of behaviors to help predict the next
interaction in a behavior-aware manner can improve the
performance.

• Comparing NextIP(w/o BSA) with NextIP(w/o BSA & 𝒈𝑢,ℓ
in TBCG), i.e., the variant of NextIP(w/o BSA) that removes
𝒈𝑢,ℓ in TBCG and only uses 𝒙∗

𝑢,ℓ
in Eq.(9), the performance

decreases showing the usefulness of the target behavior em-
bedding in balancing the context information from different
behaviors in our TBCG. Similarly, we can see the necessity
of using 𝒙∗

𝑢,ℓ
to refine the final context representation by

comparing NextIP(w/o BSA) with NextIP(w/o BSA & 𝒙∗
𝑢,ℓ

in
TBCG).

• NextIP(w/o BSA & 𝒈𝑢,ℓ in TBCG) perform worse than Nex-
tIP(w/o BSA & 𝒙∗

𝑢,ℓ
in TBCG), the reason might be that when

1386



Dual-Task Learning for Multi-Behavior Sequential Recommendation CIKM ’22, October 17–21, 2022, Atlanta, GA, USA

Architecture UB Tmall
NextIP(w/o TBCG&BSA) 0.556 0.616
NextIP(w/o TBCG) 0.577 0.635
NextIP(w/o BSA) 0.624 0.678
NextIP(w/o BSA & 𝒈𝑢,ℓ in TBCG) 0.557 0.634
NextIP(w/o BSA & 𝒙∗

𝑢,ℓ
in TBCG) 0.570 0.648

NextIP 0.632 0.681
Table 5: Recommendation performance (Rec@10) of our Nex-
tIP with different architectures on UB and Tmall for ablation
studies.

(a) UB (b) Tmall

Figure 3: Recommendation performance (Rec@10) of our
NextIP and its variants by removing different behavior-
specific item sub-sequences on Tmall and UB.

only using one behavior-specific context information in pre-
dicting the corresponding behaviors, the behavior-specific
item sequence encoders are hard to get trained well.

• Our NextIP performs the best compared with all of its vari-
ants, which clearly demonstrates the positive complemen-
tary effect of all the designed components in our NextIP.

5.3.3 Impact of Behavior-Specific Item Sequences (RQ3). In order
to study the impact of different behavior-specific item sequences on
the performance of our NextIP, we conduct an additional ablation
study and report the results in Figure 3. By removing each kind of
behavior-specific item sequences in task 1, we can get four variants
of our NextIP, i.e., “-e”, “-f”, “-c” and “-p”. We have the following
observations.

• The performance decline of removing the examination-specific
item sequences (i.e., “-e”) is more significant than that of “-f”
or “-c”, because the examinations are much more abundant.

• Our NextIP performs the best compared with all of its vari-
ants, which again clearly demonstrates the effectiveness
and rationality of utilizing all the behavior-specific item se-
quences in our NextIP.

5.3.4 Case Study (RQ4). To investigate the adaptive knowledge
transfer of the context information in different behavior-specific
item sequences in predicting the next item of different types of tar-
get behaviors, we visualize the attention scores of different source
behaviors to different target behaviors in TBCG. Specifically, after
the model converges, we obtain the attention scores of all the users
used for predicting different target behaviors in the training data.
Finally, we visualize the mean attention scores from all the users
in each data as a heatmap matrix shown in Figure 4. Note that the
horizontal axis represents the source behaviors and the vertical
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Figure 4: Visualization of the attention scores of different
source behaviors to different target behaviors in target-
behavior aware context aggregator (TBCG) of our NextIP
on UB and Tmall.

axis represents the target behaviors. We can have the following
observations.

• The main diagonal elements of both heatmap matrices have
the lowest attention scores in corresponding rows, which is
reasonable since 𝒙∗

𝑢,ℓ
is added to the final context represen-

tation as shown in Eq.(9).
• When predicting purchases, the information contribution
of adds-to-favorite and adds-to-cart is larger than that of
examinations on both datasets, which is consistent with our
intuition in online shopping.

• When predicting adds-to-cart, the behaviors of adds-to-favorite
are more informative than purchases in providing knowl-
edge, because the interests reflected in the purchase-specific
item sequences may have expired to some extent. In general,
these observations further demonstrate the rationality and
interpretability of our NextIP.

6 CONCLUSIONS AND FUTUREWORK
In this work, we propose a novel framework named NextIP for
multi-behavior sequential recommendation, which adopts a dual-
task learning strategy to convert the problem to a next-item predic-
tion task and a purchase prediction task. Specifically, we design a
target-behavior aware context aggregator (TBCG) to transfer the
unique knowledge of different behaviors so as to predict the next
interaction in a behavior-aware manner more accurately. Moreover,
we design a behavior-aware self-attention (BSA) mechanism to ag-
gregate the collection of historical interacted items of each behavior
and treat them as negative samples for more accurate learning of
purchase-oriented preferences.

For future works, we are interested in extending our NextIP to
incorporate knowledge graphs about users and items.
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